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Abstract. The relation between symmetric vectors admitted by a Riemannian manifold (a 
concept which arises in relativistic cosmological models) and the Ricci principal directions is 
discussed. The existence of two second-order symmetric vectors is found to imply the 
existence of an infinity of symmetric vectors. 

Recently the concept of locally symmetric vector fields in general Riemannian mani- 
folds has been introduced by Walker (1976). He was motivated by his earlier investiga- 
tions (Walker 1940) on possible laws of orientation of galaxies in the cosmological 
isotropic model of general relativity. A vector is called symmetric about a point if it is a 
unit vector which is invariant under all rotations about the vector at the point. A unit 
vector is defined to have first- (second-) order local symmetry in the manifold if the 
condition of symmetry is satisfied up to first (second) order about every point of the 
manifold. 

Let M be a Riemannian n-manifold, n > 3, with metric tensor g.  Then it is shown by 
Walker that a unit vector field V E T ( M )  has first-order local symmetry if it satisfies in 
local chart (xl,. . . , x " )  

VvV,=~(gwv- V,V,) (1) 
for some scalar a (V, denotes covariant derivative with respect to the metric). The 
vector field has second-order local symmetry if in addition to (1) it satisfies 

a, = a,V"V,. (2) 
A unit vector field A is a Ricci principal direction if it satisfies (R denotes the Ricci 
tensor) 

R , A "  = aA, 

for some scalar a. Now it follows immediately from the integrability conditions of (1) 
and (2) that every second-order locally symmetric vector field is a Ricci principal 
direction. Moreover, if a Ricci principal direction has local symmetry, it is necessarily of 
the second order. 

Suppose now that the manifold admits two distinct first-order locally symmetric 
vector fields V") and V'" (if V is locally symmetric then so is -V, and we do not 
distinguish between them). It can be proved (see Appendix) that the two vector fields 
(V(')* V"')/Jz are Ricci principal directions. Hence at each point of the manifold the 
two locally symmetric vectors must lie in the 2-subspace of the tangent space at the 
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point spanned by two Ricci principal directions. Several conclusions follow from this 
result, which restrict the number of first- and second-order locally symmetric vector 
fields which may be admitted. Note that in the case of a single locally symmetric vector 
admitted by a manifold, it is not confined to such a 2-space. 

Finally we mention a theorem with regard to the generation of locally symmetric 
vector fields out of given ones. Whereas the existence of two first-order locally 
symmetric vector fields does not entail the existence of any more such fields, the 
existence of two second-order locally symmetric fields V(’) and V‘” (with associated 
scalars a(1) and a(’)) can be proved (by direct substitution in the symmetry condition) to 
imply the existence of the second-order locally symmetric vector field 

v =p“’v‘l’+p‘2’v(2), 

with 

f a = 1,2, p(a) = *(a)[($(1))2 + ($(2))2 + 2$(1)$(2)(~(1), ~(2))1-1/2 

where are two scalars defined by the equations 
= a ( a )  * (a )  Vf’  

and ( , ) denotes the Riemannian inner product. 

second-order locally symmetric vector fields. 

will be used in characterisations of manifolds admitting symmetric vectors. 

This, in turn, implies that the manifold admits a two-parameter congruence of 

In a subsequent paper, the relations between symmetric vectors and Ricci directions 

Appendix 

We outline the proof of the statement that, if V(l) and V‘” are two first-order locally 
symmetric vector fields (wth associated scalars a(’) and a(2)), then (V(’)* V‘2’)/J? are 
Ricci principal directions. 

Denote 
(11 (2) 4 =g,”V, vu , 

V& = (p--&p)V;) +(a[l)-&p)vE), 

fp2< 1. 

Then equation (1) implies 

Differentiating this expression with respect to x and antisymmetrising over p and v, we 
find 

(AI) (1 - f#2)Vfia(1) = (a!:) - C#a!i)) vl” + (a!;) - 4al:)) vl”’, 

where 
- w a y  = g’””v;’ vycyll) 7 - g VV:’VVa(”. 

A similar expression is obtained for (1 - c$’)V,~(~). The integrability conditions of 
equation (1) are written in terms of the curvature tensor 

(1) (11 (1) (1) R,1*7 = (g,* - v, VA )v&(l)-(g,T- v, v, )VAa“)+(a(1))2(g,,Vjl) -g,Tvil)). 
(A21 
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Contracting this equation with the metric tensor and employing (Al), we find 

(1 - 4 2 ) ~ f i u ~ ( 1 ) Y  = aVE) + b ~ : ) ,  (A31 

with 

a = (1 - 4 2 ) [ ( n  - ~ ) ( a " ) ) ~ + a ! : ) ] + ( n  -2)(a! ; )  -+a!:)), 

b = ( n  -2)(a!i)  -+a!;)). 

Transvection of equation (A2) with V(')& V(*)* V'"' and antisymmetrisation over the 
subscripts 1 and 2 yield 

(-44) (a  ' 1 ) ) 2  + a r:) = (a(z))2 + a !;), 
whereas a similar procedure in (A3) gives (in view of (A4)) 

a!;) -a!;) = 4(a!$) -a!;)). 
Direct substitution of equations (A4) and (A5) in (A3) and its counterpart (replacing 
V(')c* V'"), leads to the relation 

(1 - 4 2 ) ~ , u ( ~ ( ' ) u  + v'~)") = (a  * ~ ) ( v Z )  * v:)), 
which completes the proof. 
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